2000-08

2000. 12

, ,

가 . 가 가 가 가 ,

가 , 가 , ,

.

(Computable General Equilibrium Model)

기 (Cost-Benefit Analysis)

. ,

. , ,

, ,

. 가 . , , ,

.

가 2000 12

韓國海洋水産開發院 院 長 李 廷 旭

1				
1.				
1)	/ 13			
2)	/ 14			
2.		••••••		•••••
1)	/ 15			
2)	/ 16			
3)	/ 17			
2				
1.				
1)	(public goods) / 19			
2)	/ 19			
3)	/ 20			
4)		가	/ 20	
5)		/ 21		
2.		•••••	•••••	
1)	/ 21			
2)	/ 24			
3				

2)	/ 28	
2.		31
1)	/ 31	
2)	/ 32	
3.		34
1)	/ 34	
2)	/ 38	
4		- 41
1.		41
1)	/41	
2)	/ 42	
2.		46
3.		48
1)	/ 48	
2)	/ 50	
3)	/ 54	
4) 가	/ 58	
5)	/ 61	
6) 가	/ 64	
7)	/ 66	
5		- 78
1.		78
2.		80
1)	/ 80	
2)	/ 81	
3)	/ 83	
4)	/ 84	
5) 가가	/ 85	

3.	88
1)	/ 88
2)	/ 90
3)	/91
4)	/ 93
5)	가가 / 94
4.	97
6	
1.	100
1)	/ 100
2)	/ 103
2.	
1)	/ 105
2)	/ 108
3.	
1)	/ 109
2)	/ 111
3)	/ 112
4)	/ 113
7	
1.	
2.	

20	2-1>	< 2-	<
2	3-1>	< 3-	<
2	3-2>	< 3-	<
2	3-3>	< 3-	<
29	3-4>	< 3-	<
30	3-5>	< 3-	<
30	3-6>	< 3-	<
3	3-7>	< 3-	<
32	3-8>	< 3-	<
가	3-9>	< 3-	<
	3-10>	< 3-	<
33	3-11>	< 3-	<
3	3-12>	< 3-	<
,3:	3-13> ,	< 3-	<
31	3-14> 5	< 3-	<
31	3-15>	< 3-	<
3	3-16>	< 3-	<
3	3-17>	< 3-	<
3	3-18>	< 3-	<
3!	3-19>	< 3-	<
4	4-1>	< 4-	<
5	4-2>	< 4-	<
52	4-3>	< 4-	<
가가 가5d	4-4>	< 4-	<
55	4-5>	< 4-	<
50	4-6>	< 4-	<
5′	4-7> 1995	< 4-	<

57				1995	4-8>	<
,		,			4-9>	<
61	• • • • • • • • • • • • • • • • • • • •	•••••	•••••			
62	•••••			1995	4-10>	<
63			가		4-11>	<
67	•••••				4-12>	<
68	•••••	••			4-13>	<
70	•••••			1995	4-14>	<
77	•••••				4-15>	<
78	•••••				5-1>	<
가 가80		가			5-2>	<
가 가82		가			5-3>	<
가 가		가			5-4>	<
' ነ 84		가			5-5>	<
가가 가86	가가		가		5-6>	<
가가 가87	가가		가		5-7>	<
가가 가87	가가		가		5-8>	<
가가 가88	가기	가			5-9>	<
89					5-10>	<
91					5-11>	<
92					5-12>	<
93					5-13>	<
가가95	가:				5-14>	<
가가96	가:				5-15>	<
가가96	가:				5-16>	<
97			가		5-17>	<
99	•••				5-18>	<
가99	가				5-19>	<
가 가 101		가			6-1>	<
가 가 101		가			6-2>	<
'} フト 102		가			6-3>	<

103		가	6-4>	<
103		1%	6-5>	<
104	가		6-6>	<
105			6-7>	<
106			6-8>	<
107	•••••		6-9>	<
108	••••••		6-10>	<
ት109	가		6-11>	<
	•••		6-12>	<
111			6-13>	<
	•••		7-1>	<

					1-1>	<
49	•••••	•••••			4-1>	<
50					4-2>	<
79	•••••	•••••			5-1>	<
가81			가		5-2>	<
82	가		가		5-3>	<
83	가		가		5-4>	<
85			가		5-5>	<
86	가	가가		가	5-6>	<
90					5-7>	<
91					5-8>	<
92					5-9>	<
93					5-10>	<
95	가가	7			5-11>	<
98	•••			가	5-12>	<

I

< > 1 1) 10 9.39% 가 0 1996 0.2% 가 0 가 가 0 가 2) 0 (Computable General Equilibrium Model) 0

フト199510

ġi				
	0	22 ,		28
	0	가	,	
	0			
	-			
	-			
	2			
	1)			
	0			,
			가	
	2)			
	·	:		

- : · ,

iil

0 3 1) 28 22 41,756 , o 1999 50 , 589, 142km 88.0%, o 1999 70.5% 1999 3,341 0 2) : 1990 3 4,555 1999 7 7,503 , 9.39% プト : 1991 276 TEU 1999 777 TEU, 13.8% 가 o 2011 14 3,200 2,016 TEU

ipv 3) 0 0.2% 가 0 - 2000 가 14.75% 1% 12 7,550 9,739 7.64% 0 1 , 3 14% 7.8 8% 0 0.25 0.4%, 0.3% 0.2% 4) 0 - 2000 9 8 549 6,192 0

7

2011

가

(3.52%)

32%

가

67.7%

 ${\mathfrak f}$

4 1)

-1980 , ,

。 -가

· · · 가

2) (CGE Model)

O CGE

0

가 o

-

gi

$$: XD_{i} = A_{i} \cdot (\alpha_{i} \cdot K_{i}^{-\rho_{i}} + (1 - \alpha_{i}) \cdot L_{i}^{-\rho_{i}})^{-\frac{1}{\rho_{i}}}$$

$$: WA \cdot wdist_{i} \cdot (\alpha_{i} \cdot K_{i}^{-\rho_{i}} + (1 - \alpha_{i}) \cdot L_{i}^{-\rho_{i}}) = P VA_{i} \cdot XD_{i} \cdot (1 - \alpha_{i}) \cdot L_{i}^{-(1 + \rho_{i})}$$

$$: \frac{M_{i}}{X X D_{i}} = \left(\frac{\delta_{i}}{1 - \delta_{i}} \cdot \frac{PD_{i}}{PM_{i}}\right)^{-\frac{1}{1 + \rho c_{i}}}$$

$$: \frac{E_{i}}{X X D_{i}} = \left(\frac{1 - \gamma_{i}}{\gamma_{i}} \cdot \frac{PE_{i}}{PD_{i}}\right)^{-\frac{1}{\rho t_{i} - 1}}$$

$$: X_{i} = IN T_{i} + CD_{i} + GD_{i} + ID_{i} + DS T_{i}$$

$$: 7 + : YH = YHLA B + YHCA P + YHS UB$$

$$: P_{i} \cdot CD_{i} = cles_{i} \cdot (1 - mps) \cdot YH \cdot (1 - htax)$$

$$: SA VIN GS = IN VES T + \sum_{i} PK_{i} \cdot DS T_{i}$$

$$: SA VIN GS = HHSA V + DEPRE CIA + FSA V \cdot ER$$

$$: GR = TA RIFF + TITA X + HHTA X$$

$$: GR = GD TOT + \sum_{i=1}^{4} G$$

$$s + GOVS UB$$

가 $: PM_{i} = pwm_{i} \cdot (1 + tm_{i}) \cdot ER$ $: PE_{i} = pwe_{i} \cdot ER$ $: P_{i} \cdot X_{i} = PD_{i} \cdot XXD_{i} + PM_{i} \cdot M_{i}$ $: PX_{i} \cdot XD_{i} = PD_{i} \cdot XXD_{i} + PE_{i} \cdot E_{i}$ $: PYX_{i} \cdot XD_{i} = PD_{i} \cdot XXD_{i} + PE_{i} \cdot E_{i}$ $: PYX_{i} \cdot (1 - itax_{i}) = PVA_{i} + \sum_{j} io_{ji} \cdot P_{j}$ $: PK_{i} = \sum_{j} P_{j} \cdot imat_{ji}$ $: PINDEX = \sum_{i} pwts_{i} \cdot P_{i}$

v iI

0	,	가 ,				
,	,	,	, 9	,	,	
0						
	(Social Accounting	Matrix)	1995			
	,			,		
0	200				47	7
	247 .		,	, 가		,
	,	,	,	가가		
5						
1)						
0	가 , ,	,				
가가				(
-	;	,	,	(,	,
-	: 1996 200	05	10 0.16%	가 가		
-	1995			,		
2)						
0						
_						

giii

-	0.6878%, 0.	.6866%,	0.6792%,	0.6680%
o -	가 가	가		가
-	0.9250%, 0.6112% 가	0.7603%,	0.6389	9%,
o -	0.7014%, 0.6853%	0.6957%,	0.6864%,	
-	0.0919%, 0.0522% 가	0.0636%,	0.0548%,	
o -	가가 가 가가 가가 가) 1.1461%() 가가	가	1.1353%(
3)				
0	가			
	가 가		,	, 가 ,

iЯ

0.0186% , 0.0198% 0.0111% 0 0.0277% 0.3 129% , 0.1490% 0 0.0095% , 0.0151% 가 0.0011% 0 0.0285% 0.0112% 0.0090% 가 4) 1% 0.0264%, 0.0295%, 0 0.0274% 0.0371%, 6 가 0.16% 가 1) 0 3 7,320 , 3 7,240 , 3 6,830 가 3 6,200

가 가가

```
16 49 , 13 91 ,
                            12
       9 19
                 가
                  4 91
0
        가
                  13 9 ,
        13 8
0
    가
                    가 가
    2,398 , 1,958 , 1,767 , 1,752
2)
   1%
    : 0.0265% (1,439 )
   : 0.0295% (4,916 )
  : 6,616
   가: 0.0653% ( 가 0.081)
3)
     : 1999 7 7,500 2011 14 3 (
0
     11 )
     : 1999
               88.0%
                      가
    2011
 가
                45.8%
0
    2000
                  3
     가
```

kI.

○ 2011 : 36 733 - 59.3%(21 3,832) - 7 1 4,310

4)

o -

0

• -

ㅇ - 가

,

7

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

가 ,

Ŋ <u>ż</u>i

0

가 가

0 2401 10% 0.240

9 2,491 10% 9,249 3,000 가 가 가

 ○
 2011
 1 7
 가

0.3%

1. 1) (Social Overhead Capital : SOC) 가 가 (World Trade Organization : WTO) 가가 가 가 (World Bank) 가 1% 가 가 .1) 1980 가 1990 74.5% 71.1%, 30.1%, 25.7% 61.3%, .3) 1980 1990 1) World Bank, World Development Report, 1994, p.2. 2) 가

, 1996, p.66.

44v

		4	5				24%
가		가					1980
9.1%, 1990	10.4%	1998	3	14.2%		가	
				가			가
	가				가		
							1970
14%			1990		7.9%		•
			1999)	88%		,
			70.5%			•	
•			•				1999
3,341					•		
							가
	,						
71 (50) (1000	가						
가 65%(1999)				99.7%가	-	
		,					
		•			가		
		가			71		
		7 1			,		
가							
71	, ,	,	가				
						•	•
2)							
,							
							•

. , 가

1 xq15

가 가 . 2. 1) (Computable General Equilibrium : CGE) , 가 **4 &** i 가 , 가 가가 , 가 가 9 9 200 , 가 , 247 47 1996 2005 10 0.16% 가 가 가 가, , 가 가 가

.

2)

가 1995 10 28 22 1 , 2 , 3) 가 3) 2 1 가 3 88%(. 1999 70.5%) 가 5

2005

10

1996

0.16%

1

 $xvi\dot{y}$

1.

가 .4)

1) (public goods)

가 가

가 가

가

가

가

가 (pure public goods) (congestable public goods)

2)

가

, 1991, pp.11 13.

Z Ø)가 (가 1 가 가 가 가 3) 가 가 가 (sunk cost) 가 가 가 4) (captive cargo) (footloose cargo) (hinterland)

가 .

.

가

2.

1) 5) , , , , ,

, ,⁶⁾ , 가

⁶⁾ Alan E. Branch, *Elements of Port Operation and Management*, Chapman and Hall, 1986, p.2.

(1)

가

(2)

가

가

가

7) B. S. Hoyle & D. Hiling, Seaport Systems and Spatial Change, John Wiley & Sons, 1984, p.43.

가

8) 金 子彰, "港と地域經濟", 「港灣」,

.8)

, 1988 1 , p.41.

.7)

3가

			2			x x izi ġ
가	,			가		
, 가 .						
		•	,			
	,					
,						
			가			,
,			•			
	٠					
. ,					가	
, , ,	,	,	,	,		
.9)		,		가가		가
,		가가				
가가		2121				2
, 3						2
, , ,				,		
					,	, 가

⁹⁾ Gilbert R. Yochum & Vindo R. Agarwal, "Static and Changing Port Economic Impacts", *Maritime Policy & Management*, Vol.15, 1988, p.157.

, , 가 ,

.12)

(2)

. 가

¹⁰⁾ R. E. Takel, The Spatial Demands of Ports and Related Industry and Their Relationships with the Community, pp.51 56.

¹¹⁾ 金 子彰, , pp.41 43.

¹²⁾ Ernst G. Frankel, Port Planning and Development, John Wiley & Sons, 1987, p.8.

2 x x z 15

.

, 가 .

,

on-dock rail system

, , ,

, , , 가 가 . . . ,

,

. < 2-1>

, , 가

, , , , ,

< 2-1>

, , , ,	
, , , , , ,	
· , (, , , , , , , , , , , , , , , , ,	, , ,
, , . ,	, .
, , , , CFS, , CY	, 가 , ,
, , , , , ,	
, ,	

· , , , , ,

.

3

1.

1)

13) 14) , < 3-1> 1999 50 28 22

< 3-1>

(28)	(22)
,	,
, , , ,	,
,	, , ,
,	, ,
, , , ,	
, ,	
(,)	-
	, , ,
, , , ,	
,	, , , ,

1999

142km 589 ,

13)

가 · · 14))가

x x v iii

(< 3-2>). 1,800km 12.7 .

< 3-2>

		(A)	(B)	(A + B)		
()	()	(m)	(m)	(m)	(m)	()
589	417,561	89,381	52,587	14 1,968	49,818	137
71	56,590	10,802	1,939	12,741	2,233	21
24	7,596	2,434	1,239	3,673	0	16
13	6,271	2,196	3,170	5,366	0	13
54	73,805	8,748	160	8,908	0	5
26	14,233	4,408	1,749	6,157	0	11
108	84,764	20,730	9,087	29,817	3,919	3
81	24,776	8,607	1,886	10,493	4,650	1
44	44,542	9,516	1,988	11,504	3,610	0
15	23,035	3,4 12	0	3,4 12	2,110	1
17	3,589	2,416	608	3,024	2,956	0

: , ^r J, 2000. : 1) 10 18 22 2) 1999 12 .

2)

< 3-3>

						: , %
1980	1995	1996	1997	1998	1999	가
132	660	7 19	770	701	775	9.76
83	403	436	458	423	473	9.59
75	276	285	295	357	416	9.44
8	127	151	163	66	57	-
90.4	68.5	65.4	64.4	84.4	88.0	-

 $3 xx \dot{p}$

1980 140%

1997 43.3%

(< 3-4>). 가 가

가 .

< 3-4>

: TEU, %

1980	1995	1996	1997	1998	1999	가
693	4,918	5,371	6,055	6,682	7,766	13.56
970	2,420	2,420	2,620	5,348	5,478	9.54
277	2,498	2,951	3,435	1,334	2,288	-
140.0	49.2	45.1	43.3	80.0	70.5	-

: ,^r ,, .

가

가 . 가 1980 1999

9.6% (13.6%) 7\ 9.4% (9.5%) 7\

가 .

가

•

, ,

. 1989

1990 5 , 1994 9 (< 3-5>).

< 3-5>

(A) 87,774 56,730 14,268 24,834 71,865 21,057 44,785 (B) 98,900 72,776 9,375 40,795 65,834 16,445 48,119 (A/B) 88.8 109.2 128.0 93.1 78.0 152.2 60.9 16.7 (1999)1.3 7.0 19.6 8.0 8.1 1.1 5.4 7.2 18.3 (1998)2.6 16.7 5.3 1.4 (1997) 20.5 8.5 12.1 23.2

: 12

1998 16.7%(1.5), 8.1%(1.5), 1.3%((< 3-6>).

< 3-6>

()	(0/)			()			
	(%)			1)	2)		
2,834	5.2	1.6	3,341	395	2,947		
276	1.3	2.3	499	57	442		
1,067	16.7	1.5	1,931	166	1,765		
531	8.1	1.5	322	60	262		
648	7.0	1.5	396	73	323		
69	19.6	1.3	41	7	34		
27	1.9	1.2	16	2	13		
2 14	8.0	1.9	136	30	106		
2	0.6	1.8	1.4	0.2	1.2		

J, 2000.

: , ^r : 1) : 2) :

3) 1999

xxxi

2.

1)

7 7,503 1990 3 4,555 1999 9 2.2 (1970 18) 가 10.5%) 가 . 9.39%(1970 10.5%) 가 1990 2 10.3% 1,978 1999 5 3,218 가 . 가 7.6% 가 (< 3-7>). 9.5%가 10.6% 가 1999 1998 1997

< 3-7> 가

: R/T

1970	1980	1990	1997	1998	1999	가 (%)				
1970	1960		1997	1998	1999	' 70 ' 80	'80 '90	'90 '99		
1,870	7,135	17,228	37,020	33,343	38,488	14.33	9.21	9.34		
359	2,268	4,751	11,483	14, 132	14,730	20.25	7.67	13.40		
2,228	9,404	21,978	48,503	47,475	53,218	15.49	8.86	10.33		
2,102	3,770	12,577	28,915	22,626	24,285	6.02	12.80	7.58		
4,330	13,174	34,555	77,418	70, 101	77,503	11.77	10.12	9.39		

23 (1976 1999) 14.0% プト 1999 777 TEU . プト 1988 1998 アト (< 3-8>). xxii

< 3-8>

: TEU

			(%)
1988	7,293	236	3.2
1993	12,496	345	2.8
1998	17, 153	673	3.9

: Drewry Shipping Consultants, Container Market Outlook, 1999.

1991 1999

> 가 13.8%

가 가

673 TEU 1998 11.2%

가 1999 ()

3.6%가 29 TEU

(< 3-9>).

가 < 3-9>

: TEU

1076	976 1981	1991 19	1007	1997 1998	1999	가 (%)			
1970		1991	1997	1998	1999	' 76 ' 81	' 81 ' 91	' 91 ' 99	
179	360	1,135	2,307	2,508	2,852	15.00	12.17	12.21	
204	464	1,431	2,404	2,650	2,895	17.86	11.92	9.21	
383	824	2,566	4,711	5,158	5,747	16.56	12.03	10.60	
0	0	141	1,172	1,268	1,725	0.00	0.00	36.76	
0	0	54	172	306	295	0.00	0.00	23.65	
383	824	2,761	6,055	6,732	7,767	16.56	12.85	13.80	

2)

(1)

(1999)

가 2001 7,500 , 2011

3 xxxiji

14 3,200 . 7\ 1999 2001 6.3%, 2002 2006 5.3%, 2007 2011 4.8% (< 3-10>).

< 3-10>

: R/T

						가	(%)
1998	1999	2001	2006	2011	' 99 ' 01	'02 '06	' 07 ' 11
33,343	38,488	40,870	52,924	64,040	3.0	5.3	3.9
14,132	14,730	15,989	19,2 19	25,190	4.2	3.7	5.6
22,626	24,285	30,638	40,978	53,957	12.3	6.0	5.7
70,101	77,503	87,497	113,122	143,186	6.3	5.3	4.8

: , ^r , 1999.

(2)

가 가

, < 3-11> 2011

가 .

< 3-11>

: TEU

						가	(%)
1998	1999	2001	2006	2011	' 99 ' 01	'02 '06	' 07 ' 11
2,508	2,853	3,174	4,316	6,289	5.5	7.1	6.2
2,650	2,895	3,243	4,386	6,359	5.8	7.0	6.1
306	295	836	1,828	2,796	68.3	12.8	8.0
1,268	1,725	1,742	2,894	4,7 14	0.5	10.5	11.1
6,732	7,768	8,995	13,424	20,158	7.6	8.4	7.7

: , ^r , 1999.

34 x i v

3.

1)

(1)

가

가

가 가

1996 . 1970

0.26%

가

1/4 , 1986 0.13% 0.2% 1990

가 0.255% 1998

(< 3-12>).

98%

< 3-12>

: 10 , %

0.2%

	1980	1985	1990	1995	1996	1997	1998
(A)	36,750	78,088	178,262	348,979	386,640	4 16,0 18	398,148
(B)	77	101	231	490	625	931	1,017
B/A	0.210	0.129	0.130	0.140	0.162	0.224	0.255

J, 2000. :

(2)

1990

1996 1% 1990 1%

3 x x x 3 y 5

. 1997

1% .

가 . < 3-13> 1997 14% ,

1.30%, 9.19%

2000 1.13% 7.64% .

2000 4.9% .

가 . 1990 가 .

< 3-13> ,

: , %

	1995	1996	1997	1998	1999	2000
(A)	548,239	629,626	7 14,006	807,629	849,376	864,740
(B)	66,270	81,482	101,301	115,002	121,916	127,550
(C)	4,900	6,253	9,307	10, 170	10,240	9,739
B/A	12.01	12.94	14.19	14.24	14.35	14.75
C/A	0.89	0.99	1.30	1.26	1.21	1.13
C/B	7.39	7.67	9.19	8.84	8.40	7.64

: , ^r , 2000.

(3)

1960 5

. 2 5 가 , ,

가 (< 3-14>).

가 가 .

36 x v i

. 3

4 가

(< 3-15>).

< 3-14> 5

, % 61 215 26 53 355 126 1 481 (62 '66) (17.2)(60.6)(-) (7.3)(14.9)(100)(26.2)634 83 1,147 76 267 2,207 166 2,373 (67 71) (52.0)(28.7)(12.1)(7.0)(3.8)(3.4)(100)248 1,284 540 3 4,674 2,669 189 9,064 9,604 ('72 '76) (51.6)(29.4)(2.7)(2.1)(14.2)(100)(5.6)16,302 7,434 5,532 1,469 3,451 34,188 3,652 37,840 ('77'81) (47.7)(21.7)(16.2)(4.3)(10.1)(100)(9.7)37, 191 9,647 24,379 2,223 6,186 79,626 10,048 89,674 ('82 '86) (12.1)(30.6)(7.8)(11.2)(46.7)(2.8)(100)115,225 14,620 789 2,538 11,538 144,710 11,890 6 156,600 ('87 '91) (79.6)(10.1)(0.5)(1.8)(8.0)(100)(7.6)7 344,046 75,353 98, 146 25,812 46,467 589,824 <u>('92</u> '96) (58.3)(12.8)(16.6)(4.4)(7.9)(100)

: , ^г д, 2000.

< 3-15>

: , %

1007	50,822	25,727	6,099	9,292	91,940	7,557
1997	(55.3)	(28.0)	(6.6)	(10.1)	(100)	(7.6)
1998	58,204	27,724	9,914	10,059	105,901	6,782
1990	(55.0)	(26.2)	(9.4)	(9.5)	(100)	(6.0)
1000	7 1,556	28,414	10,283	10,170	120,423	10,600
1999	(59.4)	(23.6)	(8.5)	(8.4)	(100)	(8.1)

: , ^r , 2000.

: , 가 ,

, , ,

3 *xxxvj*j

1980 1998 10.8 7t , 4.77 , 1.85 , 1.47 , 1.11 7t (< 3-16>).

< 3-16>

	(가)								()
	(10)		()		(km)		(km)		()	
1980	36,857	1.00	87.2	1.00	46,951	1.00	6,007	1.00	1,407	1.00
1990	178,262	4.84	224.3	2.57	56,715	1.21	6,435	1.07	1,563	1.11
1995	348,979	9.47	285.2	3.27	74,237	1.58	6,554	1.09	1,680	1.19
1998	398,148	10.80	416.2	4.77	86,990	1.85	6,683	1.11	2,062	1.47

: , г д, 2000.

(4)

0.25% 0.4% ,

0.3%

, 가 (<

3-17>).

< 3-17>

: 10 , 10 , NT

1992	238,705	333	0.139	471,064	1,618	0.330	53,377	155	0.290	
1993	265,518	356	0.134	475,381	1,862	0.392	58,745	160	0.272	
1994	303,773	401	0.132	479,260	1,758	0.367	63,765	170	0.267	
1995	348,979	490	0.140	482,930	2,070	0.429	68,921	194	0.281	
1996	386,640	625	0.162	500,356	1,461	0.292	74,977	n.a	n.a	
1997	4 16,0 18	931	0.224	507,271	1,317	0.260	n.a	n.a	n.a	
1998	398,148	1,017	0.255	n.a	n.a	n.a	n.a	n.a	n.a	

: , г д, 1998.

x x x v i i i

< 3-18>

					가
(1998)		5.2	7.44	6.83	9.48(가)
(1997)	km per square km	0.85	3.04	0.56	4.78()
(1997)	km per square km	0.0315	0.0534	0.0308	0.1194()
(1998)	()	27,109	101,701	27,480	588,212()

: IMD, The World Competitiveness Yearbook, 2000.

2)

(1)

, , ,

, (2) 65.5%, 18.2%, 4.3%, 2.0%,

10%

.

< 3-19>

, 가 가 . 2000 9

8 6,192 가 .

3 х х х **ўх**9

< 3-19>

(2)

	1997	1998	1999	2000	2001()
	59,653	72,236	81,161	98,278	92,491
가 (%)	-	21.1	13.0	20.3	-5.9
	5,965	6,665	6,741	6,192	6,555
가 (%)	-	11.7	1.1	-8.1	5.9
(%)	10.0	8.8	8.3	6.3	7.1

가

1998 1999 84.4%

88.0%

7 가 (3.52%) 가

67.7% 2011 가 32% 1999

70.5% 2011 45.8%

.15)

15) 가 가 2011 44.7% 55% 27.2%

4 b

가 (6 7) 가, 가 가

가

가

(, 가

가

가) (,

4

1.

1)

1970

Aschauer(1989) 가 가

.

.

Aschauer

()

Keeler and Ying(1988) 1950 1973

,

Nadri and Mamuneas(1994) R&D

가 R&D

Dalenberg and Partridge(1995) , ,

,

∡<u>ħ</u>ii

Bergman and Sun(1996)

. 가 ,

가 ,

Andrews and Swanson(1996)
. 48 1970 1986

. 48 1970 1980

フト Morrison and Schwartz(1996)

, 가 가 .

가 .

2)

(1) 1990 .

(1986), (1992) 가 가

(1993a) (1994) . (1993a) 가 가 4 x liji z

	가	1%	가					
0.0144%,	0.	0733%	가					
(1994)	1970	19	989					,
,			가	1%	フ	}		
							(0.0124%,
0.0118%,	0.0062%				가			
0.0268%,	0.0254%,	0.0	0134%			가		
	(1993)	1990						
	,				가	,	,	,
		1	가			1.2 12	2 1.29	, 5 가
						3.909		가
,	•			가				,
가							,	,
								가
, 가		,						
71		•					가	
가		•						
		(1996)					,	, ,
		,	,	,				
							•	
			•					
					가		가	
	(1996b)							
,	` ,				가			
		, ,	,					

*Aiv

(1997) 가 5 가 가 가 가 (1994), (1998) (1994) 1993 1997 가, 가 가 (1998) 가 가 , 가

가 (2) 2 가 . 2 가 (1984), (1986), (1989), (1989, 1993), (1994) (1984), 1983 144 , 2001 1,650 가 (1986). 1982 1984 가 7,285 7,560 가 . 1984 61,822 8,112 13% (1989)27.7%가 가 26.0% 22.0%

4

x415

4 &v i

< 4-1>

				•	, 70
			가가		
3,654	27.7	20.7	34.2	-	1987
61	22.0	-	-	-	1980
2,915	26.0	23.0	32.0	29.0	1983
403	19.0	28.0	46.0	39.0	1983
1,381('83)	17.3	38.8	30.8	-	1984
1,052('83)	30.0	32.2	50.0	51.0	1978

(1989)

1988 3.5%, 16.3%, 32.5%

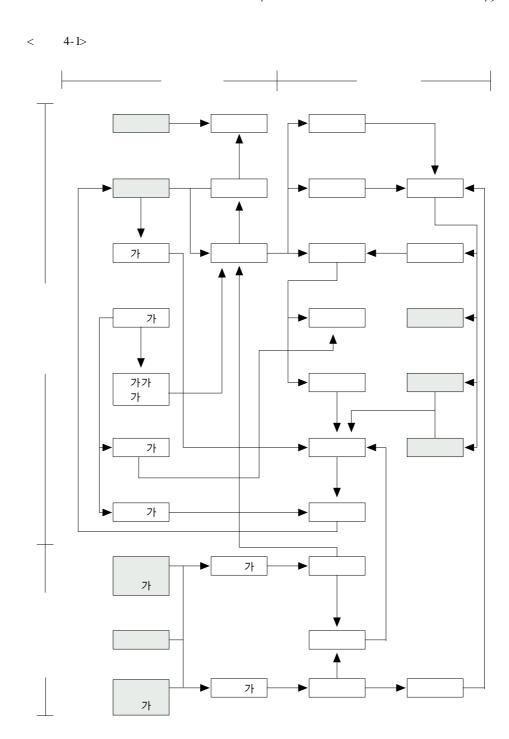
(1994)

(), 2 () . 1991 10 アナナ 1.6% .

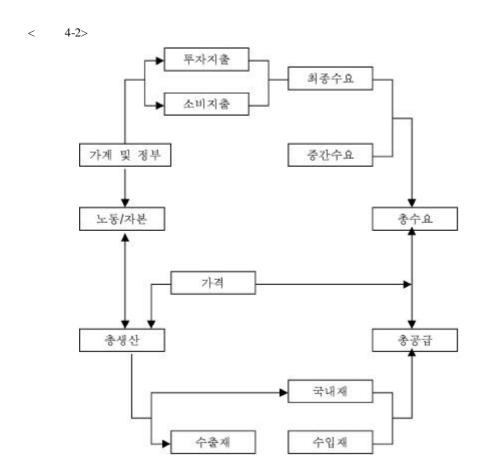
가 .

-, 가가 가 , . . .

2.


4 x l v4i7

```
(multisectoral
model)
  (partial equilibrium analysis)
                                                  가
              (optimality)
                                     가
              (micro-macro system)
(bottom-up approach)
    가
   가
                             가
           가
                                                             (structuralist CGE
    (neoclassical CGE model),
                                                                   가
model)
              가
                                                                    (mark up)
        (elasticity structuralist)
                                                      (micro structuralist)
                                                  가
                 (macro structuralist)
                                                        , 가
                                              (Robinson, 1989).
```


```
≱ &v iii
3.
  1)
                                가
                                       가
                                              1995
        10 ( )
                 (1998)
                                    (Social Accounting Matrix)
                                          0
                                                            가
가
                                         가
       ( )
                                                         가
              가
     가
                                                   . 가
                                 가
                                                   ,16)
```

16)

.

2)

di4

(Constant Elasticity of Substitution)

(Cobb-Douglas), (Generalized Leontief)

, Berck, Robinson and Goldman(1990), Buckley(1992), West(1995) , Gazel, Hewings and Sonis(1995), Harrigan and McGregor (1989), Harrigan, McGregor and Swales(1996), Jones and Whalley(1990), Morgan, Mutti and Rickman (1996), Rickman (1992) , Hoffman, Robinson and Subramanian (1996)

$$XD_{i} = A_{i} \cdot (\alpha_{i} \cdot K_{i}^{-\rho_{i}} + (1 - \alpha_{i}) \cdot L_{i}^{-\rho_{i}})^{-\frac{1}{\rho_{i}}} \cdot \cdot \cdot \cdot \cdot \cdot (4-1)$$

 XD_i :

 K_i :

 L_i :

 A_i :

 α_i :

 ρ_i :

Shin(1995)

(calibration)

4-2>

4-2>

A_{i}	α_i	ρ_i
1.2599	0.9605	0.2674
12.8209	0.3089	-0.3511
16.7946	0.4221	-0.0775
29.9908	0.2737	-0.0950
13.1505	0.0802	-0.3 137
22.6267	0.1923	-0.3137
21.2482	0.1883	-0.3137
13.2821	0.2357	-0.3 137
9.7009	0.3514	-0.0800

bij

(1998)

4-3>

(2000)

4-3>

1981 102,196 61,702 8,610 2,203 1982 112,229 68,639 10, 124 2,256 1983 74,672 126,881 11,651 2,557 79,561 1984 141,280 13, 104 3,036 1985 159,325 83,898 3,480 14,435 174,854 87,148 4,204 1986 16,220 1987 191,768 87,312 17,453 4,351 1988 236,075 95,302 18,669 4,009 1989 295,693 103,457 20,358 3,713 1990 366,506 116,047 21,152 3,562 1991 457,379 132,003 22,636 3,513 1992 567,194 15 1,44 1 24, 182 4,098 1993 703,351 17 1, 153 25,553 6,251 1994 865,707 192,065 27,362 11,913

1,600,429

1,062,394

1,305,132

214,263

239,235

269,988

16, 107

22,540

33,312

29,708

32,995

38,619

1995

1996

1997

4 liji

H: $P \ VA_i: 7 \ T$ $X \ D_i:$ WA: $w \ dist_i:$ $K_i:$ $L_i:$ $r_i: 7 \ \alpha_i:$ $\rho_i:$ $(4-3) \ w \ dist$

가

・ 가 ,

가

Berck, Robinson and Goldman(1990), Buckley(1992), West(1995), Gazel, Hewings and Sonis(1995), Harrigan and McGregor(1989), Jones and Whalley (1990), Morgan, Mutti and Rickman(1996)

, Conrad and Schroder(1993)

. Harrigan, McGregor and Swales (1996), Rickman(1992), Hoffman, Robinson and Subramanian(1996)

. < 4-4> 1995 가가 가

가

bi4v

< 4-4> 가가 가

(wdist)	가가 가 (PVA)
(wuist)	> > > (FVA)
0.7 100	0.6439
1.1780	0.6743
0.8588	0.2646
0.9803	0.3645
0.9682	0.5877
1.0376	0.1947
1.3363	0.2705
1.4831	0.7255
1.1055	0.5683

3)

ブ ,

. < 4-5>

Shin(1995), Deardoff and Stern(1986), Melo

and Tarr(1992) 가

.

$$s.t X_{i} = A C_{i} \cdot (\delta_{i} \cdot M_{i}^{-\rho c_{i}} + (1 - \delta_{i}) \cdot XXD_{i}^{-\rho c_{i}})^{-\frac{1}{\rho c_{i}}} \cdot \cdot \cdot \cdot (4-5)$$

4 By

$$PM_i$$
: $?$
 M_i :
 PD_i : $?$
 XXD_i :
 X_i :
 AC_i :
 δ_i :

< 4-5>

 ρc_i :

$A C_i$	δ_i	ρc_i
1.5635	0.1788	-0.1220
1.8127	0.6544	-0.5436
1.8846	0.3911	-0.6208
1.0270	0.0133	-0.5000
1.4849	0.2055	-0.5000
1.0911	0.0437	-0.5000
1.9100	0.3914	-0.5000
1.6459	0.2681	-0.5000
1.3561	0.1555	-0.5000

Ьъi

 E_i :

 PD_i : 가

 XXD_i :

 XD_i :

 $A T_i$:

 γ_i :

 ot_i :

< 4-6>

$A T_i$	γ_i	ρt_i
2.6950	0.7 100	1.2564
3.3023	0.7981	1.3448
2.1255	0.6032	1.3448
70.2437	1.0000	2.4286
4.7133	0.9742	2.4286
3.5976	0.0534	2.4286
2.0004	0.5113	2.4286
5.2869	0.9809	2.4286
6.8331	0.9901	2.4286

lvsiji 4

< 4-7> 1995

0.0476	0.0017	0.0460	0.0015	0.0000	0.0000	0.0000	0.0000	0.0061
0.0000	0.0000	0.0342	0.0090	0.0000	0.0000	0.0000	0.0000	0.0065
0.2000	0.1155	0.4788	0.3903	0.2251	0.1506	0.3026	0.0414	0.1138
0.0008	0.0027	0.0005	0.0003	0.0005	0.0000	0.0002	0.0025	0.0238
0.0049	0.0147	0.0085	0.0127	0.0089	0.0812	0.0076	0.0061	0.0080
0.0004	0.0011	0.0008	0.0009	0.0021	0.0019	0.0020	0.0014	0.0004
0.0002	0.0003	0.0013	0.0004	0.0005	0.0013	0.0037	0.0041	0.0048
0.0094	0.0060	0.0051	0.0038	0.0475	0.2073	0.2804	0.0297	0.0229
0.0809	0.1730	0.1150	0.1682	0.1010	0.3502	0.1182	0.1392	0.2087

< 4-8> 1995

0.0021	0.0000	0.0011	0.0014
0.0194	0.0337	0.0398	0.0070
0.3769	0.3292	0.4689	0.3928
0.0001	0.0001	0.0002	0.0004
0.0188	0.0203	0.0109	0.0116
0.0015	0.0029	0.0022	0.0008
0.0006	0.0003	0.0012	0.0004
0.0040	0.0053	0.0031	0.0037
0.1825	0.1553	0.1815	0.1660

```
4) 가
 가
                      (representative)
                           ( 4-13).
                       가가 가
         (4-14),
    가가
                           ( 4-15). 가 가
    , 가
                         , 가
                                   가
                 ( 4-16).
                                             (
4-17).
 가
                LES(Linear Expenditure System)
   가
                                 (4-18).
            , Jones and Whalley (1990), Buckley (1992)
                    , Gazel, Hewings and Sonis(1995)
        LES
        - (multi level Stone-Geary)
West(1995)
                    , Harrigan and McGregor(1989), Morgan,
Mutti and Rickman(1996), Rickman(1992)
 YH : 가
     YHLAB:
     YHCAP:
     YHSUB: 가
```

*b*wiii

4 lin

```
W\!\!A :
        L_i:
        wdist_i:
   YHCAP = \sum_{i} (PVA_{i} \cdot XD_{i} + isub_{i} \cdot TISUB - WA \cdot L_{i} \cdot wdist_{i}) - DEPRECIA
        XD_i:
        isub_i:
        TIS\ UB :
        DEPRE CIA : 가
  HHSA\ V = mps \cdot YH \cdot (1 - htax) \cdot (4-16)
        HHSAV:가
        mps:
        htax:
  P_i \cdot CD_i = cles_i \cdot (1 - mps) \cdot YH \cdot (1 - htax) \cdot \cdot \cdot \cdot \cdot (4-17)
        P_i:
                    가
        CD_i:
                 가
        cles_i:
  U :
가
                                                                   ( 4-19).
                                               가
                                          가
      ( 4-20),
                      (4-21, 4-22).
```

bv

```
, ( 4-23).
( 4-26) 가 ( 4-27) , , ,
GR = TARIFF + TITAX + HHTAX \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4-19)
     GR :
     TARIFF:
      TITAX:
 TA RIFF = \sum_{i}^{\cdot} tm_{i} \cdot M_{i} \cdot pwm_{i} \cdot ER \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad (4-20)
     tm_i:
     M_i:
                  가
     pwm_i:
     ER :
TITAX = \sum_{i} itax_{i} \cdot PX_{i} \cdot XD_{i} \cdot \cdots \cdot \cdots \cdot \cdots \cdot (4-21)
     itax_i:
     PX_i: 7
     XD_i:
htax:
      YH : 가
GR = GDTOT + \sum_{s=1}^{4} G s + GOVSUB \cdot \cdot \cdot \cdot (4-23)
     GDTOT:
     G s:
     GOVSUB:
```

l g i4

$$GOVSUB = YHSUB + \sum_{i} isub_{i} \cdot TISUB \cdot ($$
 -25)

YHSUB : 가

 $isub_i$:

 $TIS\ UB$:

tisubp:

< 4-9>

(itax)	(cles)	(gles)	(isub)
0.0120	0.0663	0.0000	0.0000
0.0105	0.0000	0.0000	0.0019
0.0453	0.3677	0.0047	0.0000
0.0483	0.0000	0.0000	0.0000
0.0268	0.0460	0.0000	0.0207
0.0127	0.0011	0.0000	0.0027
0.0147	0.0042	0.0000	0.0000
0.0501	0.0237	0.0000	0.0000
0.0367	0.4911	0.9953	0.9748

5)

boii

(sectoral investment by destination)

,

< 4-10> **1995**

0.0113	0.0001	0.0002	0.0001	0.0000	0.0000	0.0000	0.0001	0.0007
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.6437	0.6968	0.7503	0.6262	0.8660	0.8957	0.9467	0.6463	0.4237
0.1443	0.1570	0.1363	0.0938	0.0670	0.0045	0.0263	0.2707	0.4650
0.0063	0.0025	0.0030	0.0025	0.0005	0.0063	0.0004	0.0027	0.0021
0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0016	0.0007	0.0008	0.0006	0.0002	0.0011	0.0008	0.0006	0.0005
0.1927	0.1429	0.1094	0.2768	0.0663	0.0924	0.0258	0.0795	0.1079

lxijs

$$SA \ VINGS = HHSA \ V + DEPRE \ CIA + FSA \ V \cdot ER \cdot \cdot \cdot \cdot \cdot \cdot (4-28)$$

$$SA \ VINGS :$$

$$HHSA \ V : \ 7 \dagger$$

$$DEPRE \ CIA : \ 7 \dagger$$

$$FSA \ V :$$

$$ER :$$

$$SA \ VINGS = IN \ VEST + \sum_{i} PK_{i} \cdot DST_{i} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4-29)$$

$$IN \ VEST :$$

$$PK_{i} : \ 7 \dagger$$

$$DST_{i} :$$

$$DEPRICIA = \sum_{i} depr_{i} \cdot PK_{i} \cdot K_{i} \cdot (4-30)$$

$$depr_{i} : \ 7 \dagger$$

$$\sum_{i} pwm_{i} \cdot M_{i} = \sum_{i} pwe_{i} \cdot E_{i} + FSA \ V \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4-31)$$

$$pwm_{i} : \ 7 \dagger$$

$$M_{i} :$$

$$pwe_{i} : \ 7 \dagger$$

$$E_{i} :$$

/r (depr)	(KIO)
0.0274	0.0489
0.1549	0.0026
0.0882	0.4043
0.0934	0.0294
0.0083	0.0734
0.0401	0.0190
0.0547	0.0202

0.1526

0.0384

0.0641

0.3382

가

< 4-11>

baiv

```
PK_i \cdot DK_i = kio_i \cdot (IN VEST - \sum_{s=1}^{4} P s) \cdot \cdot \cdot (4-32)
     DK_i:
     kio_i:
     P s:
 ID_i = \sum_j im \, at_{ij} \cdot DK_j \cdot \cdots \cdot (4-33)
     ID_i:
     im a t_{ij}:
 6) 가
          가
가 ,
     가
                       ( 4-34). 가
/$)
              가 ( ) ( /$)
가 가 가 가
4-35). 가
            가
  (4-36),
            가
            ( 4-37).
  가가 가
                          가
            ( 4-38), 가
    가
                               ( 4-39).
가 가
   가
                       가
   가
              가
   (4-40).
 PM_i: 가
```

4 1.765

가

 P_j :

bov i

4 lx vji

,

, , , , , , ,

< 4-12>

	,
가	가
	1 , , , , , , , ,
	, ,
	9 , , , ,
	가 , 가 ,
	,

< 4-13>

, < 4-14> 1995

•

< 4-13>

		가					-				
			T ₁₃								
가	T ₂₁				T_{25}						
		T_{32}	T ₃₃	T_{34}	T ₃₅		T 37		T39	T ₃ 10	
		T_{42}	T_{43}								T ₄ 11
				T ₅₄							
				T_{64}							
								T ₇₈			
		T_{82}	T_{83}	T_{84}		T_{86}				T ₈ 10	
								T98			
			T_{10} 3								
			T ₁₁ 3								
	C 1	\mathbb{C}_2	C ₃	C ₄	C 5	C ₆	C ₇	C ₈	C ₉	C ₁₀	C_{11}

 T_{13} , T_{21} , T_{13} , T_{13}

. T₃₃ 1995

lxig4

.

. T₃₄ (T₅₄) 가 (T_{25}) (T_{35})

가 가 (8 213)

 (T_{84})

. T₄₃

. T_{4-11} (11 . (T_{42})

4,387) T_{11} 3 (34 1,944 1995 г (88 7,734)

(11 4,387)), 43 1,403

가 가가 (T₂₁) (T_{25}) $(T_{32}),$ (T_{42}) . 가

 (T_{82}) 가 가 . , 가 (311 1,137) 가 (T_{82})

 $. (T_{42})$

4-14>

 $lx\pi i$

1995 ()

53,283,918 20,354,621 548,923 431,891 6,671,757 35, 176, 082 8,243,042 2,446,000 361,622 237,708 0 0 1 18,452,857 120,515 0 0 0 745,629 0 0 0 13,715,463 32,205,845 191,930,543 3,949,614 1,057,908 1,188,321 202,745 28,243 8,022 138 867 3,396,779 1,046,174 155,748 570,362 29,898 307,279 77,779 36,314 13,213 7,896 501,688 32,218 9,014 14,533 8,711 2,028,752 313,189 833,563 1,456,214 1,101,057 46,116,683 13,878,815 1,772,941 2,459,881 464,212 470,201 88,940 57,553 18, 146, 353 3,987,134 0 17,613,918 1,475,013 1,251,088 464,700 392,629 0 0 0 0 0 85,499,846 15,038 1,088,190 1,725 825, 131 10,750,747 0 0 497, 123, 653 82,523,255 18,692,149 7,032,640 4,751,696

1995 ()

:

	5,446,553	89,152,736	0	0	0
	3,799,918	55,499,370	0	0	0
	0	0	0	8,021,300	0
1	0	1,688,081	0	0	0
	0	1,817,189	0	5,152	0
	691,005	31,605,808	176,012	0	0
	41,446	6,610,234	0	0	0
	101,743	2,2 12,640	0	57,393	0
	23,511	109,052	0	7,432	0
	68,260	1,323,044	0	0	0
	495,485	6,365,048	0	0	0
	2,324,089	57,980,410	37,574,843	2,708,402	0
	836,727	10, 191, 316	0	0	0
	0	0	10,799,679	0	0
	0	0	39,857,696	0	0
1 ()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	0
()	0	0	0	0	11,167,753
()	0	0	0	0	353,668
()	0	0	0	0	249,281
()	0	0	0	0	28,086,994
	2,864,208	15,904,011	0	0	0
	0	0	0	0	0
	2,105,837	9,029,829	0	0	0
	0	21,136	0	0	0
	18,798,782	289,509,904	88,408,230	10,799,679	39,857,696

 $lxx\dot{p}i\dot{s}$

1995 ()

lxxyy

1995 ()

1995 ()

:

	0	0	179,509,832
	0	0	123,582,574
	0	0	311,113,706
1	943,360	0	37,402,272
	59,325	0	16,205,451
	91,721,621	0	497, 123,653
	59,879	0	82,523,255
	1,280,820	0	18,692,149
	6,195,530	0	7,032,640
	1,932,181	0	4,751,696
	997,620	0	18,798,782
	10,662,046	0	289,509,904
	0	11438677	88,408,230
	0	0	10,799,679
	0	0	39,857,696
1 ()	0	0	4,648,754
()	0	0	249,296
()	0	0	38,461,264
()	0	0	2,792,852
()	0	0	6,978,617
()	0	0	1,807,052
()	0	0	1,920,585
()	0	0	6,093,628
()	0	0	32, 176, 196
()	0	0	11, 167,753
()	0	0	7 18,838
()	0	0	249,281
()	0	0	40,050,006
	2,451,801	0	109, 106,773
	0	0	1,650,347
	0	0	116,304,183
	0	0	11,438,677
	116,304,183	11,438,677	

4 lx x v jij

(2) 가

.

,

. 1995 (calibration)

. , 가 , , , ,

.

200 , 47 247 . ,

, 가 ,

가 . , , , 가가

, 가 .

< 4-15>

가, 가, 가, 가, 가 , 가가가, 가, , , , , , , , ,	20
, 가 , 가 , , , , , , , , , , , , , , , ,	20
가 , 가 , ,	4
	2
, , 가	3

5

1.

가 가가

1996 2005 10 1990 1997

가 1.81% 2.23% 가 . 가 가 13%

1990 가 가 가 . 가 3.3% 3 가 4.5%

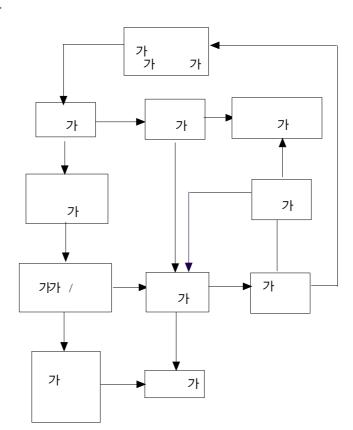
3.3% 3.8% 가 가

가

< 5-1>

	1998	1999	2000	2001	2002	2003	2004
	5.5	2.0	4.7	5.1	5.3	5.0	5.0
	0.7	4.2	7.8	8.9	9.0	9.0	8.5
가	13.1	5.2	6.5	6.0	6.0	6.0	6.0
가	6.6	2.2	3.0	3.6	3.5	3.8	3.3

J, 1998.


0.16% 10

가 가 1995

 $\int lx x \dot{r} y$

가 . 가 .

< 5-1>


```
kyox x
```

2.

1)

가

, 가 0.16% , < 5-2>

가가 가

0.6878% 0.6866%

가 가 , 0.6792%, 0.6680% フト 0.67% 0.68% 0.5 가 가 .

0.70% 0.73% 8% 0.59%

가 가

1 3 가 가

1 0.5917%, 2 0.6411%, 3 0.67 12% 가 0.5903%, 0.6401%, 0.6708%

가

가 가

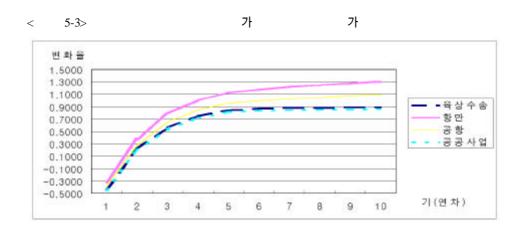
가

< 5-2> 가 가

()				
1	0.5877	0.5917	0.5903	0.5843
2	0.6354	0.6411	0.6401	0.6295
3	0.6648	0.67 12	0.6708	0.6568
4	0.6816	0.6882	0.6887	0.6720
5	0.6916	0.6983	0.6996	0.6804
6	0.6983	0.7057	0.7076	0.6859
7	0.7030	0.7111	0.7 135	0.6894
8	0.7067	0.7156	0.7 183	0.6919
9	0.7098	0.7195	0.7226	0.6940
10	0.7 126	0.7232	0.7265	0.6959
	0.6792	0.6866	0.6878	0.6680

5 lxxxi

가 가 < 5-2> 변화율 0.7400 0.7200 0.7000 0.6800 육상수송 항만 0.6600 공항 0.6400 -공공사업 0.6200 0.6000 0.5800 7 8 9 10 기(연차) 5 6 1 2 3 4


.

koxx i i

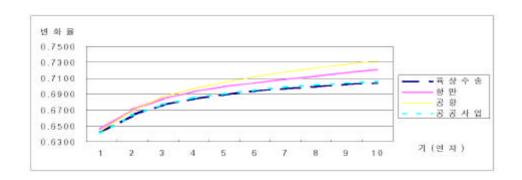
2 0.1846%() 0.3815%(), 3) 0.7853%(2 0.5407%(3 가 206% 293% 9 10 가 0.3% 1.9% 가 가 가 가

< 5-3> 가 가

: % 1 -0.4297 -0.3178 -0.3775 -0.4406 2 0.2054 0.3815 0.2756 0.1846 3 0.5667 0.78530.6496 0.5407 4 0.7545 1.0071 0.8517 0.7260 5 0.8493 1.1329 0.9631 0.8196 6 0.8733 1.1837 1.0005 0.8425 7 0.8846 1.2224 1.0277 0.8534 8 0.89071.2556 1.0503 0.85879 0.8951 1.2856 1.0712 0.8620 10 0.8991 1.3 135 1.0911 0.8646 0.9250 0.7603 0.61120.6389

5 lxxxisis

3)

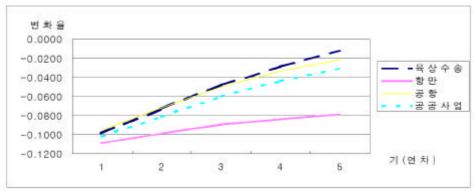

가 (0.7014%) 가 (0.6957%), (0.6864%),(0.6853%)0.0161% 1 0.6411%() 0.6464% 가 가 , 3 가 가 7 가 0.57%

. 가

< 5-4> 가 가

: % 1 0.6416 0.6464 0.6443 0.6411 2 0.6697 0.66310.6696 0.66313 0.6766 0.6842 0.6862 0.67714 0.6845 0.69320.69710.6853 5 0.6893 0.69940.7047 0.6904 6 0.6940 0.7044 0.7118 0.6954 7 0.6974 0.7088 0.71770.6990 8 0.7000 0.71290.7228 0.7017 9 0.70210.7169 0.7275 0.704110 0.70410.72100.7320 0.7062 0.6957 0.6853 0.70140.6864

< 5-4> 가 가




```
k \mu x x i v
 4)
            가가
            0.16%
        0.09 19%
        0.0636%
         0.0522%
0.0548%
   가
                                         가 가
                      가
                                                 가 .
           가
                                            1 0.1087%
        0.0790%
 5
                                               5
      0.7268 .
                                         0.1223
           가
                  0.2284
                          0.3013
                                                        가
                                  가
가
                        가
< 5-5>
```

				: %
()				
1	-0.0989	-0.1087	-0.0959	-0.1019
2	-0.0729	-0.0985	-0.0720	-0.0812
3	-0.0483	-0.0893	-0.0501	-0.0601
4	-0.0290	-0.0840	-0.0340	-0.0440
5	-0.0121	-0.0790	-0.0219	-0.0307
	-0.0522	-0.0919	-0.0548	-0.0636

lx x x815 5

< 5-5> 가

5) 가가

, , 0.16% 가

, , 가가 가 가가 1.1353%() 1.1461%() 가가 가

가가 가

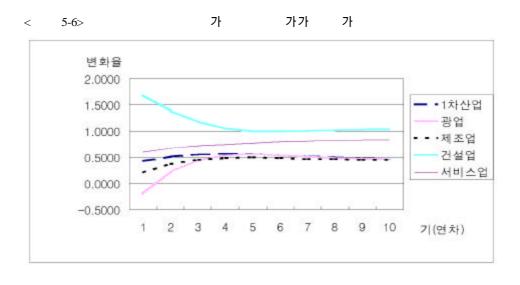
가

가가 가 가 1.1440% , 기가 가가 가

, (0.5149%), (0.4392%), (0.4085%) 0.7638%

1 가가 가 5 (0.5722%,

4 (0.5711%), 0.5075%) 가가 가


가가 가 1 1.6934% 5 0.9949% 가

10 가가 가 1.0449% . 가가 가 1 0.6095% 10 0.8421%

가

< 5-6> 가 가가 가

					: %
()	1				
1	0.4329	-0.1994	0.2185	1.6934	0.6095
2	0.5 104	0.2299	0.3763	1.3945	0.6733
3	0.5559	0.4438	0.4568	1.1788	0.7 190
4	0.5711	0.5367	0.4924	1.0570	0.7490
5	0.5698	0.5722	0.5075	0.9949	0.7680
6	0.5396	0.5402	0.4866	1.0033	0.7973
7	0.5159	0.5143	0.4725	1.0 137	0.8159
8	0.4975	0.4954	0.4640	1.0245	0.8281
9	0.4833	0.4810	0.4594	1.0349	0.8363
10	0.4722	0.4705	0.4577	1.0449	0.8421
	0.5149	0.4085	0.4392	1.1440	0.7638

5 lxxxvgj

가 가가 가 < 5-7>

					: %
()	1				
1	0.4547	-0.2 169	0.2428	1.7000	0.5844
2	0.5697	0.2860	0.4520	1.4058	0.6091
3	0.6573	0.5751	0.5851	1.1846	0.6191
4	0.7096	0.7300	0.6642	1.0551	0.6216
5	0.7390	0.8127	0.7123	0.9869	0.6208
6	0.7520	0.8414	0.7382	0.9884	0.6185
7	0.7611	0.8583	0.7569	0.9948	0.6153
8	0.7687	0.8704	0.7720	1.0034	0.6119
9	0.7762	0.8797	0.7852	1.0 126	0.6085
10	0.7841	0.8884	0.7972	1.02 17	0.6053
	0.6972	0.6525	0.6506	1.1353	0.6115

가가 가가 가

1.1396% プトプト フト フト . (0.6485%), 1 (0.6363%), (0.6224%), (0.6210%)

가가 가 가 .

< 5-8> 가 가가 가

					. /0
()	1				
1	0.4508	-0.1604	0.2475	1.6781	0.5908
2	0.5534	0.3120	0.4460	1.3899	0.6259
3	0.6258	0.5733	0.5684	1.1784	0.6444
4	0.6637	0.7063	0.6388	1.0574	0.6536
5	0.6802	0.7730	0.6808	0.9950	0.6579
6	0.6804	0.7888	0.7012	1.0005	0.6617
7	0.6787	0.7965	0.7 165	1.0093	0.6630
8	0.6771	0.8020	0.7296	1.0 193	0.6631
9	0.6764	0.8067	0.7417	1.0294	0.6625
10	0.6769	0.8117	0.7532	1.0391	0.6616
	0.6363	0.6210	0.6224	1.1396	0.6485

kxxxviii

 기가
 가가
 가

 1.1461%
 가가
 가
 가
 가

 (0.6615%)
 (0.6234%)
 (0.6083%)
 (0.5866%)

 가가
 가
 가
 가
 가
 가

•

< 5-9> 가 가가 가 : %

()	1				
1	0.4463	-0.2650	0.2409	1.7069	0.5787
2	0.5517	0.2290	0.4415	1.4 177	0.6042
3	0.6314	0.5125	0.5679	1.1987	0.6 149
4	0.6776	0.6641	0.6415	1.0688	0.6180
5	0.7018	0.7450	0.6849	0.9989	0.6176
6	0.7 109	0.7724	0.7068	1.0004	0.6157
7	0.7 167	0.7880	0.7219	1.0057	0.6130
8	0.7214	0.7991	0.7335	1.0130	0.6100
9	0.7260	0.8070	0.7431	1.02 12	0.6070
10	0.7310	0.8140	0.7517	1.0295	0.6041
	0.6615	0.5866	0.6234	1.1461	0.6083

3.

1)

가

, ,

가 .

가

가 가 .

lxxxigg가 .17)

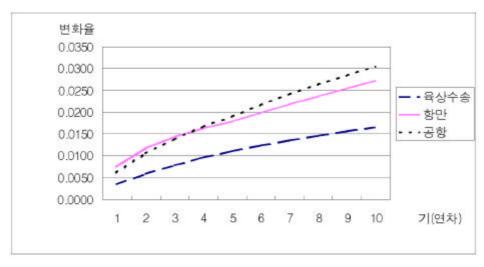
가

0.16% 가 0.0186%

0.0198% 0.0111% . 1 3 가 가 가 4

0.01%

< 5-10>


: %

()			
1	0.0035	0.0075	0.0061
2	0.0059	0.0117	0.0106
3	0.0079	0.0144	0.0139
4	0.0096	0.0163	0.0167
5	0.0111	0.0179	0.0191
6	0.0124	0.0199	0.0217
7	0.0136	0.0218	0.0241
8	0.0146	0.0237	0.0264
9	0.0157	0.0255	0.0285
10	0.0166	0.0273	0.0306
	0.0111	0.0186	0.0198

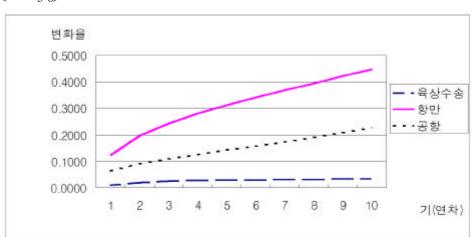
가

17)

< 5-7>

2)

```
가
0.1243% ( 1 ) 0.4471% ( 10 ) ,
                                    가
 0.3 129%
                 0.11% 0.41%
                0.22%
        0.06%
                             , 1 0.1243%
   , 3 0.2439% , 5 0.3121% , 9 0.4218%
   10 0.4471%
   10 0.4471% . 0.0634% 0.2263%
  0.0109% 0.0346%
                              가
    가
                             가 가
    가
```


가 .

5 xgj

< 5-11>

()			
1	0.0109	0.1243	0.0634
2	0.0207	0.1971	0.0909
3	0.0258	0.2439	0.1086
4	0.0282	0.2802	0.1253
5	0.0296	0.3121	0.1432
6	0.0307	0.3399	0.1577
7	0.0312	0.3677	0.1740
8	0.0319	0.3953	0.1913
9	0.0331	0.4218	0.2089
10	0.0346	0.4471	0.2263
	0.0277	0.3129	0.1490

< 5-8>

3)

가 0.0151%

, 0.0056% 0.0162%

sy <u>c</u>ii

.

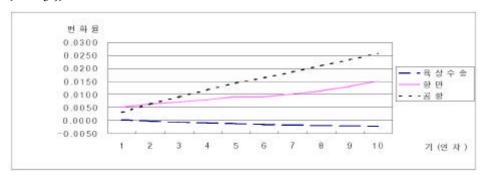
1

0.0001% (2) 0.0022% (10) . 1 2 0.0052%

0.0065% , 3

가 0.0095% .

,


•

< 5-12>

: %

()			
1	0.0004	0.0052	0.0031
2	-0.0001	0.0065	0.0065
3	-0.0005	0.0072	0.0092
4	-0.0009	0.0080	0.0118
5	-0.0011	0.0093	0.0144
6	-0.0014	0.0092	0.0165
7	-0.0017	0.0101	0.0187
8	-0.0018	0.0114	0.0211
9	-0.0020	0.0132	0.0235
10	-0.0022	0.0151	0.0258
	-0.0011	0.0095	0.0151

< 5-9>

5 x cijį

4)

가

0.0285%

가 가

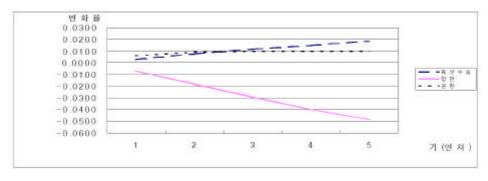
0.0090% , 0.0112%

, 2 5 0.0090% 0.0100%

.

가 가

가 , ,


,

< 5-13>

: %

()			
1	0.0030	-0.0067	0.0060
2	0.0075	-0.0182	0.0091
3	0.0118	-0.0291	0.0100
4	0.0150	-0.0400	0.0100
5	0.0187	-0.0483	0.0099
	0.0112	-0.0285	0.0090

< 5-10>

194iv

```
5) 가가
  가가
                          가가
          가가
                         0.0021% (
         ( )
 ) 0.1822%
                   가가
           , 1 -0.0141%
  10
          -0.2557%
   , 1 2 가가
   가 , 3
   가가
               0.32 19%
                           , 10
   가 0.3391%
   가가
                1
                        가
      가가
                           0.0236%
( 1 ) 0.2904%
 1 5
                가가
  0.0139% 0.0039%
                   가가
                            가
         10
  0.0154%
            가가
  0.1542%
                . 1
                             0.003 17%
                             가
                        10
0.2356%
```

x 0915 5

0.0154

-0.0021

: %

0.2356

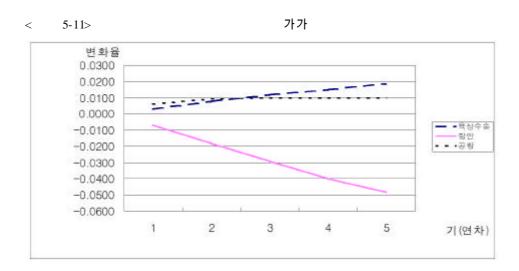
0.1542

가가 < 5-14>

10

-0.2557

-0.1449


()	1				
1	-0.0141	0.0650	-0.0236	-0.0139	0.0317
2	-0.0417	0.0000	-0.0658	-0.0232	0.0695
3	-0.0750	-0.0680	-0.1105	-0.0196	0.1037
4	-0.1051	-0.1256	-0.1473	-0.0116	0.1298
5	-0.1299	-0.1696	-0.1748	-0.0039	0.1486
6	-0.1687	-0.2281	-0.2171	0.0028	0.1795
7	-0.1980	-0.2697	-0.2460	0.0081	0.2008
8	-0.2209	-0.2996	-0.2660	0.0115	0.2 158
9	-0.2397	-0.3219	-0.2801	0.0138	0.2270

-0.2904

-0.1822

-0.3391

-0.1757

가가 가가 가 () 0.003 1% () 0.0658% 1 가가 가 가

196v i

< 5-15> 가가

					: %
()	1				
1	0.0083	0.0489	0.0018	-0.0070	0.0057
2	0.0179	0.0571	0.0 104	-0.0120	0.0049
3	0.0256	0.0623	0.0171	-0.0139	0.0042
4	0.0318	0.0653	0.0225	-0.0135	0.0036
5	0.0369	0.0676	0.0272	-0.0118	0.0031
6	0.0410	0.0691	0.0313	-0.0119	0.0027
7	0.0442	0.0700	0.0349	-0.0108	0.0023
8	0.0472	0.07 10	0.0384	-0.0095	0.0019
9	0.0501	0.0724	0.0419	-0.0085	0.00 14
10	0.0529	0.0742	0.0454	-0.0078	0.0010
	0.0356	0.0658	0.0271	-0.0107	0.0031

가가 , 가가 가 0.0346% , 0.0399%

1 , , 가가 가 , 가가 가 가가

< 5-16> 가가

: %

()	1				
1	0.0045	0.1056	0.0065	-0.0290	0.0122
2	0.0017	0.0830	0.0045	-0.0279	0.02 17
3	-0.0056	0.0608	0.0005	-0.0201	0.0294
4	-0.0137	0.0420	-0.0025	-0.0113	0.0354
5	-0.0213	0.0283	-0.0039	-0.0037	0.0400
6	-0.0302	0.0 168	-0.0053	0.0003	0.0456
7	-0.0377	0.0087	-0.0051	0.0039	0.0497
8	-0.0439	0.0032	-0.0036	0.0065	0.0528
9	-0.0492	-0.0003	-0.0012	0.0084	0.0552
10	-0.0537	-0.0020	0.0018	0.0097	0.0572
	-0.0249	0.0346	-0.0008	-0.0063	0.0399

5 x cvýj

4.

•

,

가 .

. 1%

< 5-17> , < 5-12> . 1% 7\ , 1 0.0199%

, 2 0.0248%, 3 0.0265%

. 4 10 가

-0.027 , -0.0264

•

가 1 0

-0.0295 . 1 가 0.0416

, 1 , ,

가가 가

7¹ 4 (-0.0440) , 7¹ 10 -0.0331 .

< 5-17> 가

()				가	
1	-0.0199	0.0416	-0.0127	0.0538	-0.0230
2	-0.0248	-0.0291	-0.0303	0.0585	-0.0250
3	-0.0265	-0.0430	-0.0374	0.0630	-0.0265
4	-0.0270	-0.0440	-0.0403	0.0659	-0.0273
5	-0.0270	-0.0422	-0.0413	0.0677	-0.0276
6	-0.0273	-0.0392	-0.0420	0.0686	-0.0282
7	-0.0276	-0.0369	-0.0422	0.0690	-0.0286
8	-0.0279	-0.0352	-0.0420	0.0691	-0.0290
9	-0.0281	-0.0340	-0.0417	0.0689	-0.0293
10	-0.0284	-0.0331	-0.0414	0.0687	-0.0296
	-0.0264	-0.0295	-0.0371	0.0653	-0.0274

5-12>

```
변화율
     0.0800
     0.0600
     0.0400
     0.0200
                                                    고용
                                                    소비자물기
     0.0000
                                                  - - 재정
    -0.0200
    -0.0400
     -0.0600
                                                  기(연차)
                2
                   3
                          5
                              6
                                  7
                                     8
                                         9
                                           10
            가
                   1%
-0.0371%
                                             10
                                  . 4
 -0.04
                                               7 (-0.0422)
         가
                   가
                                            1
                                                    2
                                            가
        0.0585
                         가
0.0538
                                            10
                                     3
가
                   가
                                0.6
                      가
                             가
                 가
                                         0.0230%( 1 ) 0.0296%
 , 1%
                      . 가
( 10 )
                        -0.0274
                        가
        1996
                                          60%
                                          1995
                15
                     9 14
                                          16.5%
                              1.3%
                                     (< 5-18> ).
```

가

5 $x c \dot{y} g$

< 5-18>

									:	, %
1991 52,745	52,745	7,806	3,903	475	791	337	311	738	475	738
1991	32,743	(14.8)	(7.4)	(0.9)	(1.5)	(0.7)	(0.6)	(1.4)	(0.9)	(1.4)
1002	65.094	10,620	5,477	264	924	594	462	990	1,122	792
1993	65,984	(16.1)	(8.3)	(0.5)	(1.4)	(0.9)	(0.7)	(1.5)	(1.7)	(1.2)
1005 06 457	15,914	8,874	330	1,640	772	386	1,254	2,026	482	
1995	96,457	(16.5)	(9.2)	(0.5)	(1.7)	(0.8)	(0.4)	(1.3)	(2.1)	(0.5)

: , г , 1996.

:

< 5-19> **7**+

: %

가		
	1991	0.095
	1993	0.096
	1995	0.079
		0.089
	1991	0.014
가	1993	0.015
	1995	0.013
	·	0.014

1.

1) 0.3% 1995 10 가 0.16% 가 가 0.16% 가 , 가 1996 ... 가 , 4,760 가 가 가 가 17% 가 가 가 1998 가 < 6-1> 0.16%6,700 2 1997 가 가 2% 3 7,320 가 가 プナ プナ , , 3 6,200 フナ , 3 . 가가 7,240 가 6,830 1,120 80 410

<	6-1>	가	가	
				: 10

		가				
1996	418,479	670	2,459	2,476	2,470	2,445
1997	453,276	725	2,880	2,906	2,901	2,853
1998	444,367	711	2,954	2,983	2,981	2,919
1999	483,778	774	3,297	3,329	3,332	3,251
2000	525,383	841	3,634	3,669	3,676	3,575
2001	552,177	883	3,856	3,897	3,907	3,787
2002	581,443	930	4,088	4,135	4, 149	4,008
2003	6 10,5 15	977	4,315	4,369	4,385	4,224
2004	64 1,040	1,026	4,550	4,612	4,632	4,449
2005	673,092	1,077	4,796	4,868	4,890	4,684
	538,355	861	3,683	3,724	3,732	3,620

: 1) 가 가 . . 2) 가 .

1996	129,715	-557	-4 12	-490	-572
1997	136, 164	280	519	375	251
1998	132,313	750	1,039	860	715
1999	143,685	1,084	1,447	1,224	1,043
2000	153,743	1,306	1,742	1,481	1,083
2001	163,736	1,430	1,938	1,638	1, 185
2002	174,052	1,540	2,128	1,789	1,262
2003	181,014	1,612	2,273	1,901	1,333
2004	188,254	1,685	2,420	2,017	1,405
2005	195,784	1,760	2,572	2,136	1,480
	159,846	1,200	1,649	1,391	919

: 1) 1999 r

2) 가 .

 $q\dot{v}i_2$

가 가 가 가 가가 4 9,100 가 2 3 가 100% < 6-3> 가 가 0.16%

13 9

13 8

가 가 < 6-3>

.18)

1996	20,817	134	135	134	133
1997	21,106	140	14 1	141	140
1998	19,994	135	137	137	135
1999	20,281	139	14 1	141	139
2000	20,313	140	142	143	140
	20.502	138	139	139	138

0.16% 6-4> 가 가 1996 3 가 0.16%

2,397

가 1,958 가 440

630 646

18) 360 가 80

6 *qiji*

< 6-4> 가

1996	227,737,753	225,233	247,551	2 18,40 1	232,065
1997	253,809,612	185,027	250,002	182,743	206,093
1998	248,277,445	119,918	22 1,7 12	124,387	149,215
	243,274,937	176,726	239,755	175, 177	195,791

2)

가

.

가 . 1% < 6-5>

< 6-5> 1%

				가	
	()	()	()		()
1996	-83,277	53,961	-2,644	0.0564	-26,853
1997	-112,413	-39,624	-6,395	0.0641	-32,600
1998	-117,757	-56,895	-7,478	0.0742	-37,949
1999	-130,620	-63,221	-8, 173	0.0783	-42,299
2000	-141,853	-64,880	-8,389	0.0812	-45,187
2001	-150,744	-64, 185	-	0.0853	-
2002	-160,478	-64,225	-	0.0888	-
2003	-170,334	-63,717	-	0.0923	-
2004	-180,132	-64,006	-	0.0951	-
2005	-191,158	-64,805	-	0.0979	-
	-143,877	-49,160	-6,616	0.0810	-36,978

: , 가 .

q i 194

1% 7ト , 1996 538 3,550 0.0265% 1,439 2005 0.0295% . 가 가 가 4,916 5 2000 6,488 6,616 가 10 5-17> 0.0653% 가 가 가 가 0.081 가 가 19) 가 10% 가 1.7%, 가 1.5% 가 가 가 (< 6-6>). 가

가 < 6-6>

		가	가	
	가	(%)	가	(%)
	131.4	1.73	93.9	1.45
가	25.6	0.43	32.8	0.54
	28.7	0.35	31.3	0.39
	19.9	0.28	22.5	0.31
가	24.6	0.25	-	-
	17.4	0.17	-	-
	15.2	0.25	6.7	0.20

: , ^r 1995 가 J, 1998.

가 19)

, . .가 47

2.

1)

1999 7 7,500 2011 14 3 フト , 11 (< 6-7>).

< 6-7> : , %

	1999	2001	2006	2011
	775,030	874,974	1, 13 1, 2 16	1,431,860
(A)	472,886	540,678	7 16,827	934,766
(B)	416,254	417,561	4 17,56 1	417,561
(C)	416,254	447,475	531,973	632,428
(B) - (A)	-56,632	- 123,117	-299,266	-517,205
(C) - (A)	-56,632	-93,203	- 184,854	-302,338
(B) / (A)	88.0	77.2	58.3	44.7
(C) / (A)	88.0	82.8	74.2	67.7

: 1) 1999 1998 2001 1999 . 2) (C) 1999 7 7 7 (1991 248,365, 1996 295,257 , 1991 1996 7 : 3.52%).

1999 88.0% 2011 44.7% . 7

. 7 67.7% . 2000 qvė

3 7 2011 2,016 1999 777 2011 548 (< 6-8>).

< 6-8> : TEU, %

		1999	2001	2006	2011
(A)		7,766	8,995	13,424	20,158
1999	(B)	5,478	5,478	5,478	5,478
	(C)	5,478	5,982	7,869	9,238
	(D)	5,478	5,982	13,607	20,365
(B) - (A)	-2,288	-3,517	-7,946	- 14,680
(C) - (A)	-2,288	-3,013	-5,555	- 10,920
(D) - (A)	-2,288	-3,013	183	207
(B) / (A	A)	70.5	60.9	40.8	27.2
(C) / (A	A)	70.5	66.5	58.6	45.8
(D) / (A)	70.5	66.5	10 1.4	10 1.0

, 2011 24 .

6 *cyjj*

< 6-9> : TEU

		1999	2001	2006	2011
	5 × 4('82)	900	1,000	1,000	1,000
(BCTOC)	1 × 1('96.8)	100	1,000	1,000	1,000
DECT	5 × 3('91)	960	1 200	1 200	1 200
PECT	5 × 1('97.8)	240	1,200	1,200	1,200
	5 × 4('97)	1,200	1,200	1,200	
(4)	5 × 2,5 × 1 (2002. 1)	-	-	480	1,680
	2 × 1,5 × 2	200	200		
7	1.5 × 1, 6 × 1, 5 × 2	-	65	265	265
	5 ×2	228	228	228	228
		360	360	360	-
	-	4, 188	4,253	4,733	4,373
	5 × 9, 2 × 5	-	-	2,695	2,695
	5 × 6, 2 × 4	-	-	-	1,868
	-	4,188	4,253	7,428	8,936
1	5 ×4	960	960	960	960
2	5 ×4, 2 ×4 (2003)	-	-	1,388	1,388
3	5 ×4	-	_	960	960
4	5 × 12	-	-	-	2,880
	5 × 20, 2 × 4	960	960	3,308	6,188
9		330	769	2,871	5,241
(A)	-	5,478	5,478	5,478	5,478
(B)	-	-	504	2,391	3,760
(A+B)	-	5,478	5,982	7,869	9,238
(C)	-	-	_	5,738	11,127
(A+B+C)	-	5,478	5,982	13,607	20,365

: , г д, 1999.

(pp. -52 55) .

qvģii

2)

.

가 , , , ,

, , , , , 9

2011 23 9,918

51.9% 12 4,600 , 48.1% 11 5,318

< 6-10>

:

2000~2001	2002~2006	2007~2011	2000~2011	
18,828	81,847	109,336	210,011	17,501
8,783	66,473	84,769	160,025	13,335
27,611	148,320	194, 105	370,036	30,836
8,005	43, 159	73,436	124,600	10,383
3,855	53,295	58,168	115,318	9,610
11,860	96,454	13 1,604	239,918	19,993
0	8,940	17,623	26,563	2,214
0	7 10	11,884	12,594	1,050
0	9,650	29,507	39,157	3,263
10,823	28,498	16,564	55,885	4,657
4,928	11,073	13,322	29,323	2,444
15,751	39,571	29,886	85,208	7,101
0	720	1,183	1,903	159
0	0	0	0	0
0	720	1,183	1,903	159
0	530	530	1,060	88
0	1,395	1,395	2,790	233
0	1,925	1,925	3,850	321

: 1) 2000 2011 (12) '99

2) 100% .

6 **£09**

, , , , , ,

,

2011 37 , 21 16 .

37

< 6-11> . プト 2011

100% 37 2001 10 3 7 ,

< 6-11> 가

	()	()
2001	12.2927	-38.8234
2002	13.5548	15.0939
2003	14.2273	45.1086
2004	14.5944	61.8552
2005	14.8125	71.8863
2006	14.9587	78.6121
2007	15.0697	83.7088
2008	15.1629	87.9893
2009	15.2464	91.8500
2010	15.3242	95.4866
	145.2435	592.7673

3.

1)

1994 2003 10

qX10

가 ,

•

, 1998

< 6-12>

: %

1995	1997	1998	1999	2000
62.2	63.8	62.3	60.9	61.2
21.9	19.8	19.0	20.1	23.2
6.8	6.8	7.4	8.8	5.9
-	-	-	1.5	1.8
9.1	9.6	11.3	8.7	7 9

: , ^г

가 가 . 가

가 가 가 가 가 , 가 가 가

가 가

.

2000 ,

64.5% 가 , . .

フト 10% フト .20) 2000

20) 「 (2000.1)

ÇX İ 6

9 4,424 10% 9,442 가 가 3,000

< 6-13>

75,331 28,591 7,248 2,227 9,739 123, 136 100 100 100 100 (%) 100 100 74,490 27,909 6,743 2,220 6,282 117,645 (%) 98.9 97.6 93.0 99.7 64.5 95.5 853 2,638 3,541 50 0.1 11.8 2.9 (%) 0.0 0.0 27.1 790 682 -347 7 818 1,950

, r : 」, 2000.

-4.8

0.3

8.4

1.6

2)

(%)

가

2.4

1.0

2011

가

가

가

1 1,000 2 가 1,000 2002

2011 10

가 2000 2004

9.2%가

 $q\chi\dot{p}i$.

. 3 () , ブト

가 가 . (: 10)

,

. 가 가

•

가 가 , .

,

21) 100 95% (, r

1.

, ,

,

(CGE Model) .

· 가

가 , 가 , , ,

 0.16%
 가
 ,
 가

 가
 ,
 ,
 ,

. 가

. 가

가 . 가

7 CPQV5

가 가 .

(0.6957%), (0.6864%), (0.6853%)

, 가

0.09 19%

, , 0.0522 0.0636%

. 가

, , 가

· 가가 가 , 1

, , 가가 가가 , , , 가가 가가 , .

< 7-1> , , ,

, 가

1 .

< 7-1>

		3	2	1	4
		3	1	2	4
		4	2	1	3
		4	1	3	2
가가	1	1	4	3	2
		1	4	2	3
		1	4	3	2
		4	2	3	1
		3	1	2	4

 $q \chi \kappa i$

.

2.

1990 10.4% 가 1997 10 9.39% 가 .

1996 0.2% 1998 0.26% 가 1999

80% .

•

가 .

, 가 가 .

2 65.5%, 18.2%, 4.3%, 2.0%, 10%

.

가

. 가 フ・マンジン 10% 2001 9、2,491 10% 9,249 1 10% 9,249 1 10% 10% 11 7

0.3%

. 가 .

, , ,

.

가 ,

```
J, 2000.
   , 1994.
            ى, 17 , 1992a.
               가
                    ى, 27 4 , 1992b.
                      ", Г
                                J, 7,
 , 1993a.
1993b.
      가
                                    ", Г
                       가
 31 2 , 1995a.
      ى, 30 1 , 1995b.
                    ", Г
                             J, 13 2 , 1997.
                     ١,
     , 1999.
     가
                              ", 1998
                    J, 1998. 6. 27.
            , 1994.
                         가
                         J, 9 3 , 1997.
                         : CGE
           가
                        3 , 1997.
                J, 45
                           J ( ),
, 1993.
                              ", г
```

```
J, 6 , 1990.
. , "
                             ", Г
                                         30
4 , 1955.
. , "
「 」, 32 1 , 1997.
, 「 」, 1
 4 , 1995.
             J, 1984.
                                        46
 1 , 1998, pp.77 106.
           J, 2 1 , 1995.
                                     , 1996.
            " 가
        ", r J, 32 6 , 1997.
, "
J, 12 1 , 1996.
                               J, 1989.
                               ", Г
45 1 , 1997.
· , "
45
                             " Г
                   : CGE
J, 45 2 , 1997.
                    : 가
        ),
)ر
                  , 1994.
                    , 1998.
                    가 ",「가
        , 1992.
                가
                                  )ر
                                        ),
, 1993.
. , г
                                  J,
, 1991.
           APEC
, "CGE
", Г
         J, 45 2 , 1997.
                             ", Г ј, 22 ,
            가 가
1994.
```

```
, 1994.
               · Hewings (1999),
           (1975
                    1995)", 「
                                            5
       Γ
                       가
                                               ) [
                                                              ),
      1994.
                                                                    , 1989.
                                       J,
      , г
                                             (1954
                                                     1996) ,
      1998.
                                                          J,
      1998.
                                  J, 1999.
                                                               J, 2000.
                                           1986.
                                                                           J,
              1993.
        20
金 子彰, "港と地域經濟", 「港灣」,
                                              , 1988
                                                            . 1998.
神戶市 港灣局,「神戶港と市民經濟」, 1988.
Andrews, K. and J. Swanson, "Does Public Infrastructure Affect Regional
     Performance?", Growth and Change, Vol. 26, 1996.
Aschauer, David A., "Is Public Expenditure Productive?", Journal of Monetary and
```

- Economics, Vol. 23, No. 2, 1989a, pp.177 200.
- ___, "Public Investment and Productivity Growth in the Group of Seven", Economic Perspectives, Vol. 13, No. 5, 1989b, pp.17 25.
- _, "Does Public Capital Crowd out Private Capital?", Journal of Monetary Economics, Vol. 24, No. 2, 1989c, pp.171 188.
- Baudelaire, Jean-Georges, Port Administration and Management, IAPH, Tokyo, 1986. Bergman, E.M. and D. Sun, "Infrastructure and Manufacturing Productivity: Regional Accessibility and Development Level Effects", Infrastructure and Complexity f Economic Development, New York, Springer, 1996.
- Berck, P., S. Robinson and G. Goldman, "The Use of Computable General Equilibrium Modes to Assess Water Polices", Working Paper No. 545, Dept. of Agricultural and Resources Economics, University of California at Berkeley, 1990.

- Branch, A. E., Elements of Port Operation and Management, Chapman and Hall, 1986.
- Buckley, P. H., "A transportation-oriented interregional computable general equilibrium model of the United States", *The Annals of Regional Science*, Vol. 26, 1992, pp.331 348.
- Conrad, K., and M. Schroder, "Choosing environmental policy instruments using general equilibrium models", *Journal of Policy Modeling*, Vol. 15, 1993, pp. 521 543.
- Dalenberg, D.R., and M.D. Patridge, "The Effects of Taxes, Expenditures, and Public Infrastructure on Metropolitant Area Employment", *Journal of Regional Science*, Vol. 35, No.4, 1995.
- Deardorff, A.V. and R.M. Stern, *The Michigan Model of World Production and Trade*, Cambridge, 1986.
- Defourny, Jacques, and Erik Thorbecke, "Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework", *The Economic Journal*, Vol. 94, 1984.
- Devarajan, S., Lecture Notes on Computable General Equilibrium Models, Harvard University, 1988.
- Frankel, E. G., Port Planning and Development, John Wiley & Sons, 1987.
- Gazel, R., G. J. D. Hewings, and M. Sonis, "Trade, Sensitivity and feedbacks: Interregional impacts of the US-Canada Free Trade Agreement", In *Recent advances in spatial equilibrium modelling*, eds. J. C. J. M. van den Bergh, P. Nijkamp, and P. Rietveld, New York: Springer, 1995.
- Harrigan, F., and P. G. McGregor, "Neoclassical and Keynesian perspectives on the regional macroeconomy: A computable general equilibrium approach", *Journal of Regional Science*, Vol. 29, 1989, pp. 555 573.
- Harrigan, F., P. G. McGregor, and J. K. Swales, "The system-wide impact on the recipient region of a regional labor subsidy", Oxford Economic Papers 48, 1996, pp.105 133.
- Hoffmann, S., S. Robinson, and S. Subramanian, "The role of defense cuts in the california recession: Computable general equilibrium models and interstate factor mobility", *Journal of Regional Science*, Vol.36, 1996, pp.571 595.
- Haughwout, A. F., "Infrastructure, Wages and Land Price", *Infrastructure and Complexity of Economic Development*, New York, Springer, 1996.
- Hoyle, B. S., and D. Hiling, *Seap ort Systems and Spatial Change*, John Wiley & Sons, New York, 1984.

- Jones, R., and J. Whalley, "A Canadian regional general equilibrium model and some application", *Journal of Urban Economics*, Vol. 20, 1989, pp.368 404.
- Jones, R., and J. Whalley, "Regional balance sheets of gains and losses from national policies", *Regional Science and Urban Economics*, Vol. 20, 1990, pp.421 435.
- Keeler, T. E., and J. S. Ying, "Measuring the Benefits of a Large Public Investment", *Journal of Public Economics*, Vol. 36, 1988.
- Kim, B. H., Structural Adjustment Policies Under External Shocks: a Computable General Equilibrium Analysis for the Case of Indonesia, Cornell University Ph. D. Dissertation, 1990.
- Melo, Jaime de and David Tarr, A General Equilibrium Analysis of US Foreign Trade Policy, London, 1992.
- Morgan. W., J. Mutti, and D. Rickman, "Tax exporting, regional economic growth, and welfare", *Journal of Urban Economics*, Vol. 39, 1986, pp.131 159.
- Pyatt, Graham, and Jeffery I. Round, "Accounting and Fixed Price Multipliers in a Social Accounting Matrix Framework," *The Economic Journal*, Vol. 89, 1979.
- Rickman, D. S., "Estimating the impacts of regional business assistance programs: Alternative closures in a computable general equilibrium model", *Regional Science*, Vol. 71, 1992, pp. 421–435.
- Robinson, S., "Multisectoral Models", in Chenery, Hollis and T. N. Srinivasan (eds), *Handbook of Development Economics*, Vol. 2, Amsterdam, North-Holland, 1989.
- Shin, D. C., "The Effects of an Environmental Tax on Trade: A CGE Approach to the Korean Case", *The Korean Economic Review*, Vol. 11, No. 1, 1995, pp.5 15.
- Shoven, J. B., and J. Whalley, "Applied General Equilibrium Models of Taxation and International Trade: An Introduction and Survey", *Journal of Economic Literature*, Vol. 22, No. 3, 1983, pp. 1007—1051.
- Thorbecke, E., "Impact of Stabilization and Structural Adjustment Measures and Reforms on Agriculture and Equity", Paper prepared for the Sequoia Institute's Conference on Policy Reform and Equity in LCs, Washington D. C, 1987.
- West, G. R., "Comparison of input-output, econometric and computable general equlibrium impact models at the regional level", *Economic Systems Research*, Vol. 7, 1995, pp.209 227.

2000年 12月 26日 印刷 2000年 12月 30日 發行

- 12月 30日 發行

續職 李 廷 旭 發行人

發症 韓國海洋水産開發院

2105-2700 FAX: 2105-2800 1984 8 6 16-80

組版・印刷/(株) 精 印 社 3486-6791 4 가 15,000

:

Tel: 394-0337, 734-6818